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Multiscale Modeling of Point and Line Defects in
Cubic Lattices

P. W. Chung & J. D. Clayton
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005, USA

ABSTRACT

A multilength scale method based on asymptotic expansion homogenization (AEH) is de-
veloped to compute minimum energy configurations of ensembles of atoms at the fine length
scale and the corresponding mechanical response of the material at the coarse length scale. This
multiscale theory explicitly captures heterogeneity in microscopic atomic motion in crystalline
materials, attributed, for example, to the presence of various point and line lattice defects. The
formulation accounts for large deformations of nominally hyperelastic, monocrystalline solids.
Unit cell calculations are performed to determine minimum energy configurations of ensem-
bles of atoms of body-centered cubic tungsten in the presence of periodic arrays of vacancies
and screw dislocations of line orientations [111] or [100]. Results of the theory and numerical
implementation are verified versus molecular statics calculations based on conjugate gradi-
ent minimization (CGM) and are also compared with predictions from the local Cauchy-Born
rule. For vacancy defects, the AEH method predicts the lowest system energy among the three
methods, while computed energies are comparable between AEH and CGM for screw dislo-
cations. Computed strain energies and defect energies (e.g., energies arising from local inter-
nal stresses and strains near defects) are used to construct and evaluate continuum energy
functions for defective crystals parameterized via the vacancy density, the dislocation density
tensor, and the generally incompatible lattice deformation gradient. For crystals with vacan-
cies, a defect energy increasing linearly with vacancy density and applied elastic deformation
is suggested, while for crystals with screw dislocations, a defect energy linearly dependent on
the dislocation density tensor appears more appropriate than the quadratic dependency often
encountered in the continuum plasticity literature.
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204 CHUNG AND CLAYTON

1. INTRODUCTION

Multiscale methods often establish constraints that
permit numerical juxtaposition of discrete and con-
tinuum material descriptions. This necessarily re-
quires enforcement of kinematic approximations to
enforce compatibility between two otherwise dis-
parate domains to reduce the overall number of
degrees of freedom and produce a computation-
ally tractable problem. One such kinematic approx-
imation is the Cauchy-Born rule (CB), which en-
forces tangent maps at the fine scale to simulate
the locally homogeneous deformation of bulk three-
dimensional crystals [1,2]. Detailed expositions of
the underlying theory can be found in several ref-
erences [3–5]. The utility of the CB is not confined
exclusively to bulk crystals. Following extension of
the Cartesian theory commonly used for bulk lat-
tices to curvilinear manifolds, deformations of pla-
nar and lower dimensional monocrystals can be ef-
ficiently described as well [6–8].

The importance of these types of kinematic ap-
proximations manifests in their continued founda-
tional presence in multiscale methods for materi-
als modeling. Early models used to study atom-
istic processes in the vicinity of crack tips or disloca-
tion cores relied heavily on continuum elasticity the-
ory, without including atoms in the far-field. Early
work featured one-way [9–14] or two-way [15–19]
coupled methods, in which displacement fields es-
tablished at the interface between continuum and
atomistic regions were computed either from so-
phisticated interfacial conditions or from initial con-
ditions derived from continuum elasticity theory.
Increases in computing power permitted more re-
alistic two-way couplings, whereby atomistic fields
were permitted to affect the far-field elastic continua
through the latter’s discretization with finite ele-
ments [20–23]. Such improvements in the coupling
algorithms enabled description of dynamic crack
growth [21]. These approximations were also pru-
dent at the time as uninteresting effects in nearly
homogeneously deforming regions far from defects
could be disregarded and because of the limitations
of then available computing resources.

Novel methods involving electronic structure
have permitted consideration of higher accuracy
calculations in the near field [24,25], with the finite
element domain in the far-field remaining essen-
tially linear elastic. Although some early work at-

tempted to parameterize stress-strain relationships
in the far-field region with atomic potentials [20–
22], more efficient considerations of selected atom-
istic effects on material behavior were achieved
through the initial developments of the quasicon-
tinuum theory [26–28] that employed hyperelastic
constitutive behavior, derived from atomistic poten-
tials, for the overlaying finite elements. In the sub-
sequent decade, significant new developments in
methodologies have improved the fidelity of atom-
istically informed, continuum multiscale computa-
tional methods [29–31].

The multiscale modeling approaches discussed
thus far reduce the problem dimensionality through
various kinematic approximations such as the CB.
Even with presumable improvements in the perfor-
mance of future generations of microprocessors, the
increasing demand of higher-fidelity modeling [32]
will require increases in computational resources
that will outpace projected computer hardware im-
provements. Such demands in fidelity mandate im-
provements over the CB in situations involving, for
example, large defect densities [33] and complex ac-
tive lattices [34].

Tewary and colleagues [35,36] demonstrated the
feasibility of representing lattice defects in reduced
form using Green’s function methods. In such a
lower-order method, the defect core can be repre-
sented with semianalytical functions, thereby pro-
viding an initial estimate that can be used as an
initial state in a more computationally intensive,
larger-scale atomistic simulation. However, gen-
eral situations involving heterogeneous strain fields
and high defect densities, as opposed to isolated
defects, are usually not considered. Furthermore,
increasing evidence supports the idea that concur-
rent simulations at finite temperature in which a sta-
tistical (quantum mechanical) or discrete (molecu-
lar) domain is interfaced with a continuum domain
presents profound obstacles to computer method
development [37–40]. Although the present investi-
gation is restricted to quasi-static isothermal condi-
tions, it is noteworthy that self-consistent hierarchi-
cal approaches provide a means of preserving sta-
tistical ensembles of atomic motions in the contin-
uum domain, such as at a finite element quadrature
point, through the use of unit cell-based averaging.

The asymptotic expansion homogenization
(AEH) method is formulated and implemented
in the present article, building on the original
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theory of Chung and colleagues [41,42]. Discrete
simulations are executed at the atomistic level, with
each volume element (unit cell) of atoms subjected
to periodic boundary conditions. Asymptotic ho-
mogenization methods [43,44] are used to compute
the macroscopic tangent stiffness associated with
the mechanical response of the ensemble of atoms
in the unit cell. The CB kinematic rule is invoked
for imposition of the bulk continuum deforma-
tion, with the fine-scale displacements of individual
atoms identified with the inner displacements in the
asymptotic approximation. The present approach
appears ideal in its present form for addressing the
response of microstructures containing periodically
distributed defects, in contrast to other methods
(e.g., [26]) initially developed to address isolated
defects. This is because only one or a few defects
need be simulated explicitly at the atomistic level
within the context of the periodicity assumption
invoked in our homogenization scheme. However,
owing to this very same periodicity assumption,
the method suffers in the sense that isolated (i.e.,
nonrepeating) defects cannot be easily modeled.
Specifically, previous applications of AEH involved
modeling the elastic response of graphene with
point defects [41,42] and incorporation of the kine-
matics and energetics of finite plastic deformation
in metallic crystals at the coarse scale [45]. Other
developments have appeared in the generalized
mathematical homogenization method [46,47] to
more carefully account for the dynamical and
thermal behavior of atoms.

Noteworthy developments discussed in the
present article include simulations, in deforming
metallic crystals, of vacancies and of dislocations
of orientations not considered previously [45] as
well as parameterization and comparison of en-
ergy density functions from continuum defect field
(CDF) theory with those computed using the AEH
method. Regarding the first development, the AEH
method is demonstrated to predict atomic configu-
rations of unit cells containing defects with nearly
equal, and in some cases lower, system energies
than conventional lattice statics methods [48,49]
based on conjugate gradient minimization (CGM).
Comparison with results from CGM is of interest
because CGM is often invoked at the fine scale in
other popular multiscale methods such as the quasi-
continuum theory [26–28]. For the defects consid-
ered here, both AEH and CGM are shown to predict

more realistic, lower-energy atomic configurations
than the local CB rule.

Regarding the second development, some back-
ground discussion on continuum field theories of
defects is now warranted. As described here, these
constitute a class of elastic-plastic material mod-
els for crystalline solids that are also multiscale
theories, though discrete atoms are not involved
at the fine scale. Rather, effects of defects and
other sources of microstructural heterogeneity are
reflected in the material response functions (e.g.,
stored energy, yield stress, or hardening param-
eters) through kinematic variables, internal state
variables, and spatial gradients of these variables
[50–55]. Such representations account for strain
hardening in plasticity of single crystals [52,53]; evo-
lution of microstructures associated with point, line,
and surface defects [54,55]; and regularization of
numerical instabilities in continuum inelasticity im-
plementations [56,57].

While nonlinear elastic moduli for defect-free
crystals have been parameterized versus deforma-
tion [58,59], continuum-level energy functions of
materials with periodically distributed defects such
as vacancies and dislocations have heretofore not
been explicitly parameterized, simultaneously, ver-
sus defect density and applied deformation using
atomistic modeling tools. In many cases, sim-
ple phenomenological formulations are used for
defect-dependent strain energy in continuum mate-
rial models. These formulations may either be mo-
tivated from microscopic physics, or may be used
simply because energetic data are unavailable. For
porous materials (i.e., those with vacancy defects),
the elastic strain energy is typically reduced linearly
with vacancy concentration such that stress is lin-
early reduced [60] along the lines of isotropic dam-
age mechanics theory [61]. For dislocations, energy
functions, either linear or quadratic, in the line den-
sity of dislocations per unit area have been assumed.
In strain gradient–based continuum dislocation the-
ories, dislocation populations are often partitioned
into statistically stored dislocation (SSD) and ge-
ometrically necessary dislocation (GND) families,
following [62]. The former include closed dislo-
cation loops and contribute no net Burgers vector,
while the latter are a measure of the incompatibil-
ity of the elastic (or plastic) deformation field. Typi-
cally, a linear dependence of stored (or free) energy
of the crystalline material on SSDs or total disloca-
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206 CHUNG AND CLAYTON

tion density [63] is assumed. On the other hand,
quadratic functions are often used to account for the
local strain energy imparted by the GND tensor [51–
53,55]. This form is used for simplicity, motivated
by analogy to linear elasticity theory, and also is
used to provide a back stress dependent on the den-
sity of dislocations [60,64] or its gradient [51,53]. Re-
maining open issues pertaining to continuum mod-
eling of dislocation defects in the context of gradi-
ent plasticity are quantification of the length scale
parameter(s) required to normalize the energy [65]
and proper selection of the metric tensor used to col-
lapse the GND tensor to scalar form [55,66].

In the present work, numerical results obtained
from execution of the AEH multiscale method are
used to motivate the choice of continuum energy
functions and associated parameters, in particular
for single crystalline tungsten (W) containing vacan-
cies or screw dislocations. Only energies are consid-
ered, and not stresses, in part because the latter are
not trivially defined from an atomistic perspective
[67]. The investigation is limited in the sense that
only a few classes of defects are examined, for only
one material (W), and these defects are arranged pe-
riodically in the lattice. Furthermore, all simulations
are isothermal at null temperature (akin to molecu-
lar statics). However, this work constitutes an initial
step toward computing energies used in continuum
defect theories from physics-based, multiscale com-
putations, as opposed to phenomenological curve
fitting of the material response to macroscopic stress
data, for example. Intermediate scale methods, such
as phase field models [68,69] or discrete disloca-
tion simulations [70–72], may ultimately be needed
to address nonideal defect configurations and finite
temperature defect kinetics to bridge scales of atom-
istic resolution and continuum crystal mechanics for
arbitrarily disordered states of the material.

The remainder of this article is organized as fol-
lows. Section 2 features derivations of the multi-
scale homogenization equations applicable to geo-
metrically nonlinear problems, with discrete atoms
resolved at the fine scale. Section 3 includes dis-
cussion of numerical implementation and special-
ization of the theory to tungsten crystals. Results
of demonstrative simulations of defects in the atom-
istic domain are given in Section 4. These results are
applied toward development of continuum-scale
defect field descriptions in Section 5. Vectors and
tensors are written in boldface type, with scalars

and individual components of vectors and tensors
written in italic font. The indicial notation is fre-
quently employed, with summation implied over
repeated indices, for example, AaBa = A1B1 +
A2B2 + A3B3 when a = 1, 2, 3.

2. THEORY

Reference and current configurations of a continu-
ous body, denoted by B0 and B, respectively, are
introduced. Let X and x denote coordinates span-
ning the reference and spatial frames, and let xa =
xa(XA, t) denote the differentiable motion of the
material, with t denoting time. The deformation
gradient or tangent mapping F from B0 to B is then
written as

F =
∂x
∂X

F a
.A =

∂xa

∂XA
(1)

Strain measures are introduced as follows, where
GAB = ∂AX · ∂BX and gab = ∂ax · ∂bx are, respec-
tively, metric tensors in reference and spatial coor-
dinate systems:

CAB = F a
.AgabF

b
.B 2EAB = F a

.AgabF
b
.B −GAB (2)

Denoted by Σ, P, and S, the Cauchy stress, first
Piola-Kirchhoff stress, and second Piola-Kirchhoff
stress, respectively, are related by

Σab = J−1F a
.AP bA = J−1F a

.ASABF b
.B (3)

Assuming quasi-static conditions, local forms of the
balances of linear and angular momentum are writ-
ten as follows:

P aA
|A + Ba = 0 F a

.AP bA = P aAF b
.A (4)

where the vertical bar denotes covariant differentia-
tion and B is the body force vector per unit reference
volume. The usual symmetry relations for stress
tensors hold from Eq. (3) and the second of Eq. (4),
Σab = Σ(ab) and SAB = S(AB), where parentheses
indicate symmetrization, that is, 2A(ab) = Aab + Aba

for arbitrary second-rank tensor A. Multiplying the
first of Eq. (4) by virtual displacement δu and inte-
grating over reference volume V , the following vir-
tual work principle is obtained:

∫

V

P aBgab (δu)b
|B dV =

∫

∂V

T agabδubdA

+
∫

V

BagabδubdV (5)
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MULTISCALE MODELING OF POINT AND LINE DEFECTS IN CUBIC LATTICES 207

with the traction per unit reference area A given by
T a = P aBNB , where NB are covariant components
of the unit normal vector to external boundary ∂V .
Here a free energy potential Ψ per unit reference
volume on B0 is assumed to exist, with the stress
tensor satisfying the following hyperelastic relation-
ships:

SAB = 2
∂Ψ

∂CAB
=

∂Ψ
∂EAB

(6)

For the particular case of first-order hyperelasticity,
Eq. (6) becomes

SAB =
∂2Ψ

∂EAB∂ECD
ECD = CABCDECD (7)

where CABCD = C(AB)(CD) is the fourth-rank ten-
sor of elastic moduli in the reference frame. Substi-
tuting Eq. (6) into Eq. (5) and using Eq. (3),

∫

V

2F a
.A

∂Ψ
∂CAB

gab (δu)b
|B dV =

∫

∂V

T agabδubdA

+
∫

V

BagabδubdV (8)

The link between atomistic (fine scale) and con-
tinuum (coarse scale) resolutions is established here
via the AEH technique [41,42,45]. Let fine and
coarse length scales be spanned by coordinates ya =
ya(Y A, t) and xa = xa(XA, t), respectively. Al-
though multiple time scales have been used else-
where [73], in the present scheme, both scales are
parameterized by the same temporal variable t.
Multiscale coordinates are related by

xa = εya XA = εY A (9)

where ε is a small scalar that remains constant
throughout the time history of deformation. Coarse-
and fine-scale displacements u and v, respectively,
are introduced. These are restricted below to coin-
cident Cartesian coordinate systems in the reference
and spatial frames:

ua = xa − δa
.AXA va = ya − δa

.AY A (10)

with the Cartesian shifter δa
.A = 1 for a = A and

δa
.A = 0 for a 6= A. Corresponding deformation gra-

dients then follow as

F a
.A =

∂ua

∂XA
+ δa

.A fa
.A =

∂ya

∂Y A
+ δa

.A (11)

Next an additive decomposition of displacements at
the coarse scale is assumed:

ua = ūa + ũa = ūa + εṽa (12)

where ūa represents the displacement that would
exist in a microscopically homogeneous medium
and ũa is the perturbation in displacement due to
fine-scale heterogeneity, with corresponding fine-
scale representation ṽa. The corresponding micro-
scopic decomposition is

va = ε−1ua = v̄a + ṽa = (F a
.A − δa

.A)Y A + ṽa (13)

with v̄a the microscopic displacement arising from
the projection to the fine scale of the macroscopic de-
formation gradient F a

.A. Differentiating u of Eq. (12)
with respect to XA gives

∂

∂XA
(ūa + εṽa) =

∂ūa

∂XA
+

∂ṽa

∂Y A
(14)

where we have appealed to the second of Eq. (9).
The left side of Eq. (8) can be written as follows in
Cartesian coordinates:∫

V

2F a
.A

∂Ψ
∂CAB

gab(δu)b
|B dV=

∫

V

∂Ψ
∂F a

.B

∂(δua)
∂XB

dV (15)

and the total displacement variation δua can be ex-
pressed, from Eq. (12), as

δua = δūa + εδṽa (16)

Substituting Eqs. (15) and (16) into Eq. (8) produces

∫

V

∂Ψ
∂F a

.B

∂

∂XB
(δūa + εδṽa)dV

=
∫

∂V

T agab(δūb + εδṽb)dA

+
∫

V

Bagab(δūb + εδṽb)dV (17)

which is then volume averaged over microdomain
Y to yield

1
Y

∫

Y

∫

V

∂Ψ
∂F a

.B

(
∂(δūa)
∂XB

+
∂(δṽa)
∂Y B

)
dV dY

=
1
Y

∫

Y

∫

∂V

T agab(δūb + εδṽb)dAdY

+
1
Y

∫

Y

∫

V

Bagab(δūb + εδṽb)dV dY (18)
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208 CHUNG AND CLAYTON

Equation (18) is satisfied in the asymptotic limit ε →
0 only if

1
Y

∫

Y

∫

V

∂Ψ
∂F a

.B

∂(δūa)
∂XB

dV dY =
∫

∂V

T agabδūbdA (19)

+
∫

V

BagabδūbdV (∀δūa)

1
Y

∫

Y

∫

V

∂Ψ
∂F a

.B

∂(δṽa)
∂Y B

dV dY = 0 (∀δṽa) (20)

Solutions of Eqs. (19) and (20) converge to the exact
solution (i.e., minimum admissible system energy)
for ūa and ṽa when the displacement field is peri-
odic in Y , for example, when ṽa|Y =0 = ṽa|Y =L for
a domain of size L. Note that ūa is constant over Y
and thus automatically satisfies this periodicity con-
straint.

Equations (1)–(20) have addressed a purely con-
tinuum description at fine and coarse length scales.
Presented next are kinematic and thermodynamic
assumptions needed to relate atomistic and contin-
uum fields and incrementally update atomic coor-
dinates. Assume that in reference configuration B0,
the representative volume or unit cell for homoge-
nization consists of atoms arranged in a lattice, per-
haps imperfect due to the presence of defects. Fur-
thermore, assume that in deformed configuration B,
the same mass and number of atoms exist in this
representative volume. The position vector for each
atom j in configuration B0 is given by Z〈j〉 = ai

〈j〉Ei,
where angled brackets are reserved for atomic labels
which span 1 to N, ai

〈j〉 are integers, and Ei are the
lattice vectors in the reference configuration. Spatial
positions za

〈j〉 of atoms in configuration B are then
found as follows, in Cartesian coordinates:

za
〈j〉 = δa

.AZA
〈j〉 + qa

〈j〉 (21)

with q〈j〉 being a displacement vector between ref-
erential and current states for atom j. Let R〈j\k〉 and
r〈j\k〉 denote vectors separating atoms j and k in re-
spective configurations B0 and B, that is,

R〈j\k〉 = Z〈k〉 − Z〈j〉 (22)

r〈j\k〉 = z〈k〉 − z〈j〉 (23)

The CB rule states that the atoms in the lattice match
the gross deformation gradient F̄ a

.A of the contin-
uum, ea = F̄ a

.AEA, with ea the lattice vectors in

the deformed configuration. For certain crystals,
namely, defect-free centrosymmetric crystals, this
has been shown to be an effective means of repre-
senting crystal distortions [4]. However, symmetry-
eliminating or symmetry-reducing features, such as
crystal defects, invalidate CB and require an atom-
istic minimization computation, such as that advo-
cated here in what follows, to determine distortions
of local crystal structure near defects.

The point of departure here, therefore, is to use
homogenization to determine a correction to the lo-
cal region near the defect by approximating the new
coordinates of the displaced lattice points with

za
〈j〉 = F̄ a

〈jk〉AZA
〈k〉 + ṽa

〈j〉 (24)

with summation implied over repeated atomic in-
dices. The first term on the right-hand side of
Eq. (24), F̄ a

〈jk〉AZA
〈k〉, accounts for the uniform projec-

tion over each periodic cell of the macroscopic lat-
tice deformation field to the fine scale (i.e., the CB
rule), and ṽa

〈j〉 is the discrete atomistic analog of the
perturbation in displacement due to the microscopic
heterogeneity given previously in Eq. (13), written
here for atom j. Spatial separation vectors in Eq. (23)
then become

r〈j\k〉= F̄R〈j\k〉+ṽ〈k〉−ṽ〈j〉= F̄R〈j\k〉+r̃〈j\k〉 (25)

with r̃〈j\k〉 = ṽ〈k〉 − ṽ〈j〉 accounting for deviations
from the CB rule in a local sense.

Henceforth in the present work, we assume a free
energy potential, measured either per unit reference
volume or per atom, of the simple form depending
only on the relative positions of atomic nuclei (Born-
Oppenheimer lattice statics):

Ψ = Ψ
(
q〈j〉,Z〈j〉

)

= Ψ
(
r〈1\2〉, r〈1\3〉, r〈2\3〉, ...r〈N−1\N〉

)
(26)

Interatomic forces f〈j〉a and the Hessian matrix (i.e.,
atomic stiffness) H〈jk〉ab are given by

f〈j〉a =
∂Ψ

∂qa
〈j〉

H〈jk〉ab =
∂2Ψ

∂qa
〈j〉∂qb

〈k〉
(27)

These quantities arise directly from a Taylor series
expansion of Eq. (27) about a fixed set of reference
coordinates Z〈j〉

∣∣
0

comprising a perfect lattice:

Ψ
(
q〈j〉

)
=Ψ0+f〈k〉a

∣∣
0
qa
〈k〉+

1
2 H〈jk〉ab

∣∣
0
qa
〈j〉q

b
〈k〉+· · · (28)
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where the subscript 0 denotes quantities evaluated
at q〈j〉 = 0. The expansion of the strain energy po-
tential of the solid about the undeformed state is
also given by the following continuum approxima-
tion:

Ψ(F a
.A) = Ψ0 +

∂Ψ
∂F a

.A

∣∣∣∣
δa

.A

(F a
.A − δa

.A) (29)

+
1
2

∂2Ψ
∂F a

.A∂F b
.B

∣∣∣∣
δa

.A

(F a
.A−δa

.A)
(
F b

.B−δb
.B

)
+ · · ·

where the reference energy Ψ0 is typically assigned
a value of zero in strictly continuum models. Note
that a more specific objective form of Eq. (29) could
be written in terms of the strain measure EAB of
Eq. (6), for example, as opposed to the deformation
gradient F a

.A. While only the former is invariant un-
der rigid body motion, Eq. (29) suffices, for illustra-
tive purposes, in the present context. On taking the
first variations of Eqs. (28) and (29), atomic forces
and stresses vanish in a perfect lattice in the unde-
formed state, that is,

f〈j〉a
∣∣
0

= 0
∂Ψ

∂F a
.A

∣∣∣∣
δa

.A

= 0 (30)

leaving the following force-displacement and stress-
deformation relations on neglecting higher than
second-order terms in Eqs. (28) and (29):

f〈j〉a = H〈jk〉ab

∣∣
0
qb
〈k〉 P .A

a = ĈAB
ab

∣∣∣
δa

.A

(
F b

.B−δb
.B

)
(31)

where the mixed-configurational elastic moduli are
ĈAB

ab = ∂2Ψ/∂F a
.A∂F b

.B . Unobstructed minimization
of Eqs. (28) and (29) may proceed only when H〈jk〉ab

and ĈAB
ab are positive semidefinite functions of their

arguments. Using Eq. (30) and equating reference
energies Ψ0 in Eqs. (28) and (29), to second order,

H〈jk〉abq
a
〈j〉q

b
〈k〉 = ĈAB

ab (F a
.A − δa

.A)
(
F b

.B − δb
.B

)
(32)

a relation that is generalized here to hold when
H〈jk〉ab and ĈAB

ab are not evaluated at the reference
state (i.e., secant moduli) and when the lattice is not
initially free of defects. Integrating the right-hand
side of Eq. (15) by parts and applying the divergence
theorem over volume Y with oriented surface ele-
ment NAdA,

1
A

∫

∂Y

∫

V

∂Ψ
∂F a

.A

δṽaNAdV dA

=
1
Y

∫

Y

∫

V

∂

∂Y A

(
∂Ψ

∂F a
.A

)
δṽadV dY (33)

Localizing the volume integral on the right-hand
side of Eq. (33) and considering all admissible varia-
tions δṽ, the microscopic linear momentum balance
becomes

∂

∂Y A

(
∂Ψ

∂F a
.A

)
=

∂P .A
a

∂Y A
= 0 (in Y) (34)

as the area integral vanishes since one may select
δṽ = 0 on A = ∂Y . Equation (34) is general in the
sense that no assumption is made on the order of the
incremental elastic response; for example, nonlinear
higher-order elastic constants are admitted. For al-
gorithmic purposes, however, it is advantageous to
assume a first-order hyperelastic response along the
lines of Eq. (31), an appropriate assumption for most
engineering metals undergoing quasi-static defor-
mations:

∂

∂Y A

(
ĈAB

ab

(
F b

.B − δb
.B

))
= 0 (35)

where ĈAB
ab is a mixed-variant effective elastic mod-

ulus tensor. Next, from Eq. (11) and the displace-
ment gradient expression Eq. (14), Eq. (35) becomes

−∂ĈAB
ab

∂Y A

(
∂ūb

∂XB

)
=

∂

∂Y A

(
ĈAB

ab

∂ṽb

∂Y B

)
(36)

The intention of the present derivation is expres-
sion of Eq. (36) in terms of atomistic and macro-
scopic displacements. Invoking the chain rule gives

∂

∂ZB
〈j〉

=
∂Y A

∂ZB
〈j〉

∂

∂Y A
= δA

〈j〉B
∂

∂Y A
(37)

where the linear operator δA
〈j〉B simply refers initial

position ZB
〈j〉 of discrete atom j to fine scale refer-

ence coordinate Y A. On inserting Eq. (37) into the
left-hand side of Eq. (36),

∂ĈAB
ab

∂Y A

(
∂ūb

∂XB

)
→ ∂ĈAB

ab

∂ZA
〈j〉

(
∂ūb

∂XB

)

=
∂2Ψ

∂qa
〈j〉∂F b

.B

(
∂ūb

∂XB

)
= −DB

〈j〉ab

(
∂ūb

∂XB

)
(38)
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210 CHUNG AND CLAYTON

where DA
〈j〉ab = −∂2Ψ/∂qa

〈j〉∂F b
.A. On appealing to

Eq. (32), and assuming small atomic perturbations
ṽa
〈m〉, the right-hand side of Eq. (36) becomes

∂

∂Y A

(
ĈAB

ab

∂ṽb

∂Y B

)
→ ∂

∂ZA
〈k〉

(
ĈAB

ab

∂ṽb
〈k〉

∂ZB
〈j〉

)

=
∂2Ψ

∂qa
〈k〉∂qb

〈j〉
ṽb
〈k〉 = H〈kj〉abṽ

b
〈k〉 (39)

In Eqs. (38) and (39), the → notation denotes the
transformation steps ṽb → ṽb

〈k〉 and δ A
.B → δA

〈j〉B .
Using Eqs. (38) and (39), the fine-scale equilibrium
Eq. (36) finally becomes

DA
〈j〉ab

∂ūb

∂XA
= H〈kj〉abṽ

b
〈k〉 (40)

Subsequently, Eq. (40) is solved for the inner dis-
placements ṽb

〈k〉 describing the locally perturbed
atomic coordinates. Note that by hypothesis and
analogy with the two-scale continuum homogeniza-
tion theory, solution of Eq. (40) converges to the ex-
act solution (i.e., lowest-energy configuration of ad-
missible sets of atomic coordinates) only when ṽb

〈k〉
is periodic over Y . In other words, periodic bound-
ary conditions on atomic displacements [74] must
be applied at the fine scale for Eq. (40) to yield a
meaningful solution.

Now reconsider coarse-scale Eq. (19), assuming
that ṽ is known from solution of Eq. (40). The left-
hand side of Eq. (19) can be written as

1
Y

∫

Y

∫

V

∂Ψ
∂F a

.B

∂(δūa)
∂XB

dV dY (41)

=
1
Y

∫

Y

∫

V

ĈBA
ab

(
∂ūb

∂XA
+

∂ṽb

∂Y A

)
∂(δūa)
∂XB

dV dY

where fine-scale atomic coordinates affect F a
.A and

ĈAB
ab through Eqs. (14) and (28), respectively,

and thus affect the macroscopic response. From
Eqs. (37)–(40),

ĈBA
ab

∂ṽb

∂Y A
→ ĈBA

ab

∂ṽb
〈j〉

∂Z̃A
〈j〉

=
∂2Ψ

∂qa
〈j〉∂F b

.B

ṽb
〈j〉

= −DB
〈j〉abṽ

b
〈j〉 (42)

The coarse-scale, static linear momentum balance,
Eq. (19), then becomes

1
Y

∫

Y

∫

V

ĈBA
ab

(
∂ūb

∂XA

)
∂(δūa)
∂XB

dV dY =
∫

∂V

T agabδūbdA

+
∫

V

BagabδūbdV+
1
Y

∫

Y

∫

V

DB
〈j〉abṽ

b
〈j〉

∂(δūa)
∂XB

dV dY (43)

3. IMPLEMENTATION

The focus of the present effort is application of
Eq. (40) to update the configuration of N atoms
subjected to macroscopic displacement gradient
∂ūb/∂XA, applied uniformly over a single coarse-
scale integration point, such that Eq. (43) need not
be solved explicitly. The atoms comprise a peri-
odic unit cell of volume Y and may be arranged
initially to encompass defects, such as vacancies or
dislocations, at t = 0. Perturbations from homo-
geneous deformation (i.e., perturbations from the
CB) are measured by the atomic quantity ṽb

〈j〉. Note
that when the CB is accurate, for example, when de-
fects are absent, the macroscopic stress at a given
applied deformation level is minimized with respect
to variations in atomic degrees of freedom such that
∂ (∂Ψ/∂F a

.A) /∂qb
〈j〉 = 0, and thus Eq. (40) yields

ṽb
〈j〉 = 0.

Since the material’s mechanical response is non-
linear in the presence of defects, an iterative scheme
is employed for application of the AEH computa-
tional method to deforming crystals. Let S be the
enumerated set of all conceivable nonuniform de-
formations of the lattice:

za
〈j〉

∣∣∣
i

= F̄ a
〈jk〉AZA

〈k〉 + ηiṽa
〈m〉 (∀i ∈ S) (44)

Equilibrium Eq. (40) then becomes

DA
〈j〉ab

∂ūb

∂XA

∣∣∣∣
i

= H〈jk〉abη
iṽb
〈k〉 (45)

where the line search parameter ηi is determined it-
eratively such that a local minimum-energy config-
uration is attained:

min
ηi

Ψ
(
z

(
ηi

)) ≈ min
q〈j〉

Ψ
(
z

(
q〈j〉

))
(46)

The physical implication of Eq. (46) is that the min-
imum energy state corresponding to the vector q〈j〉
of Eq. (21) can be approximated by the state that
corresponds to Eq. (44), where the information in
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the initial solution vector ṽb
〈k〉, determined earlier in

the computation from Eq. (40), has been reused. A
scenario in which such a scheme may offer signif-
icant computational benefit is mechanical calcula-
tions of lattice deformations for generating stress-
strain curves, whereby the deformation gradient is
monotonically increased.

The numerical algorithm proceeds as follows.
First, Eq. (40) provides the trajectory for ṽb

〈k〉 in 3×N
solution space. Then atomic coordinates z〈j〉 and
corresponding displacements q〈j〉 are updated it-
eratively via Eq. (44). With each iteration, the en-
ergy Ψ

(
z

(
q〈j〉

))
is computed using the updated

coordinates z〈j〉 = Z〈j〉 + q〈j〉. A bisection algo-
rithm is used to efficiently determine the particu-
lar value of ηi that gives the minimum energy con-
dition ∂Ψ

(
z

(
ηi

))
/∂ηi = 0 for each increment in

macroscopic deformation ū.
The noteworthy feature of the present AEH com-

putational method is its straightforward trajectory,
determined by Eq. (45), to the solution of updated
atomic coordinates and the corresponding energy
minimum. This is in contrast to traditional molecu-
lar dynamics simulations that rely on a series of in-
cremental loading and equilibration steps or CGM
methods that rely on series of incremental straining
and minimization steps, both in full 3 × N solution
space. The methods are compared qualitatively in
Fig. 1. For the molecular methods, the stepwise so-
lution path denotes successive incremental loading
and relaxation. For the AEH method, the trajec-
tory of the solution is denoted by the correspond-
ing dotted line, with distance along this path mea-

strain

e
n
e
rg

y

minimum system energy

AEH

molecular statics/dynamics

*
  final solution
(target energy)

FIGURE 1. Schematic comparison of numerical ap-
proaches

sured in practice by the value of line search parame-
ter ηi. It is also important to note that no assumption
of linearity of material behavior is made. Indeed,
the determination of the numerical value ηi through
the condition ∂Ψ

(
z

(
ηi

))
/∂ηi = 0 leaves the full

material nonlinear (or nonquadratic) features of the
atomistic energy Ψ undisturbed.

The AEH method is applied here in a study of
the mechanical behavior of pure tungsten (W), a
BCC transition metal of relatively high mass density.
Its combination of high density, high strength, and
high melting point render it a popular material for
use in defense applications such as ordnance [63,75].
The potential energy function used here for describ-
ing atomistic interactions in W is discussed in what
follows.

An empirical N-body potential specifically devel-
oped for transition metals [76] is used to compute
the free energy Ψ of Eq. (26), in particular because
of its adequacy for describing energies and/or mo-
tion of dislocations and other lattice defects in W, as
reported elsewhere [77–80]. According to the rep-
resentation of Finnis and Sinclair [76], the summed
total potential energy E of a set of atoms at positions{
z〈j〉

}
for j = 1, 2, ...,N is given by

E = EN + EP (47)

where EN is theN-body term that is a function of the
superposition of the local electronic charge densities
ρ〈j〉, the latter obtained from summation of atomic
charge densities φ. EP is a pair potential that ac-
counts for core-core interactions. Specifically, the N-
body term is

EN = −Λ
∑

〈j〉
f

(
ρ〈j〉

)
(48)

where

f
(
ρ〈j〉

)
=

√
ρ〈j〉 ρ〈j〉 =

∑

k

φ
(
r〈j\k〉

)
(49)

is always nonnegative and real,

r〈j\k〉 =
∣∣r〈j\k〉

∣∣ =
∣∣z〈k〉 − z〈j〉

∣∣ (50)

φ (r) =
{

(r − d)2, r ≤ d
0, r > d

(51)

and Λ is an empirical constant. The parameter d de-
notes an adjustable cutoff zone for superposition of
local charge densities, chosen here to lie between the
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212 CHUNG AND CLAYTON

second and third nearest neighbors, that is, a < d <
a
√

2, with a the lattice parameter. The pair potential
is constructed as

EP =
1
2

∑

j,k,j 6=k

ψ
(
r〈j\k〉

)
(52)

where ψ is of the following polynomial form:

ψ (r) =
{

(r − c)2
(
c0 + c1r + c2r

2
)
, r ≤ c

0, r > c
(53)

with empirical constants c0, c1, and c2. The cutoff
parameter c, like d of Eq. (51), is also assigned a
value between the second and third nearest neigh-
bor distances. Finnis and Sinclair [76] determined
the other constants via calibration to experimentally
determined, macroscopic elastic properties for sin-
gle crystalline W. Tables 1 and 2 list the experimen-
tal and fitted parameters, respectively.

Notice that E is the total energy of N atoms in
the fine-scale unit cell. The Helmholtz free energy
density in a continuum sense, Ψ, is related to E as

Ψ = U − ηθ =
E

βN
(54)

where U is the continuum internal energy, η is the
continuum entropy per unit volume, and θ is the ab-
solute thermodynamic temperature of the system,
which we assume is zero in the last of Eq. (54) for
the present implementation in the context of molec-
ular statics, such that E = βNU . Also included in
Eq. (54) is the scalar β = 0.5a3, a constant denot-
ing the volume occupied by each atom in a perfect
reference lattice. This unit conversion factor was in-
cluded implicitly in earlier work [45].

Substitution of Eqs. (47) and (54) into earlier def-
initions then yields

H〈jk〉ab =
∂2Ψ

∂qa
〈j〉∂qb

〈k〉
=

1
βN

[
∂2 (EN + EP )

∂qa
〈j〉∂qb

〈k〉

]
(55)

DA
〈j〉ab =− ∂2Ψ

∂qa
〈j〉∂F b

.A

=− 1
βN

∂2(EN +EP)
∂qa
〈j〉∂qc

〈k〉

∂qc
〈k〉

∂F b
.A

(56)

ĈAB
ab =

∂2Ψ
∂F a

.A∂F b
.B

=
1

βN
∂2(EN +EP)
∂qc
〈j〉∂qd

〈k〉

∂qc
〈j〉

∂F a
.A

∂qd
〈k〉

∂F b
.B

(57)

To first order, from Eqs. (21)–(25), with F̄ a
〈jk〉A ≈

F a
.Aδ〈jk〉, the following geometric relationships

arise:

∂rc
〈j\k〉

∂F a
.A

= RA
〈j\k〉δ

c
.a

∂qb
〈j〉

∂F a
.A

= ZA
〈j〉δ

b
.a (58)

Derivatives of E with respect to atomic displace-
ments qa

〈j〉 are listed in [76] and are not repeated
here. In the present numerical scheme, Eqs. (55)–
(58) are evaluated analytically and subsequently
used in fine-scale equilibrium Eq. (45).

4. NUMERICAL RESULTS AND VALIDATION

The AEH multiscale computational method is ap-
plied here to address the nonlinear elastic response
of body-centered cubic (BCC) tungsten (W) con-
taining periodically distributed vacancies and screw
dislocations of two orientations. In these simula-
tions, unit cells are deformed in uniaxial stretch to
2.5% elongation. The primary solution variable of
interest is the strain energy density of the material
in the presence of defects contained within the unit
cell. The present approach readily enables paramet-
ric variations of the defect density via the prescrip-
tion of the number of atoms in the fine-scale repre-
sentation relative to the total number of defects em-
bedded within the unit cell.

One intention of the present investigation, dis-
cussed in more detail in Section 5, is examination
of aspects of material behavior that could be used
subsequently in stand-alone continuum defect theo-
ries, in particular, details associated with stored en-
ergy of defect fields and the effects of applied defor-
mations on elasticity and stored energy for various
fixed defect concentrations. Despite the presump-
tion of zero temperature, one may still draw conclu-
sions, at least in a qualitative sense, regarding stress
and energetics associated with dislocation behavior
in BCC metals in the context of lattice statics calcula-
tions [74,78]. A standard trend in the literature has
been development of such scaling methods for the
purely mechanical problem before extending to the
finite temperature regime [81].

Simulations of the deformation of unit cells con-
taining various numbers of atoms, configured to
represent several classes of crystal defects, are con-
ducted. In the calculations, the energy density and
tangent stiffness of a single Lagrangian finite ele-
ment integration point are determined by the mi-
croscopic (i.e., atomistic) response. Initial atomic
coordinates are found using a two-step procedure:
first the linear-elastic solution for displacement field
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TABLE 1. Experimental lattice quantities for W
a Lattice parameter [Å] 3.1652
EC Cohesive energy [eV/atom] -8.90
C11 Elastic constant [GPa] 522.4
C12 Elastic constant [GPa] 204.4
C44 Rhombohedral shear modulus [GPa] 160.6
µ Tetragonal shear modulus [GPa] 159.0
B Bulk modulus [GPa] 310.4
PC Cauchy pressure = 1

2 (C12 − C44) [GPa] 21.9

TABLE 2. Constants for Finnis-Sinclair [76] EAM potential (W)
d [Å] 4.40024
Λ[eV] 1.896373
c [ Å] 3.25
c0 47.1346499
c1 -33.7665655
c2 6.2541999

of the defect is applied to the atoms, then a conju-
gate gradient algorithm [49] is invoked to transition
the atomic positions to a stable local minimum en-
ergy state. Subsequently, the response to applied
deformation is computed using our AEH scheme
according to the numerical procedure described in
Section 3. The applied (i.e., coarse scale) deforma-
tion gradient field (in conjunction with fine-scale
periodicity) is uniaxial stretching over a range of
1.000 ≤ F11 ≤ 1.025, with the lateral edges fixed (co-
variant Cartesian notation is used here and in sub-
sequent figures for simplicity, i.e., F̄ 1

.1 → F11 ). We
also compare, for validation purposes, the final con-
figurations attained using our procedure with those
obtained from incremental energy minimization us-
ing the CGM method. In the latter approach, a small
increment in the stretch field is first imposed uni-
formly over all atoms, and then a conjugate gradi-
ent program [49] is used to update the atomic co-
ordinates to the corresponding local minimum en-
ergy state. This process continues, with a new set
of conjugate gradient minimization iterations con-
ducted on application of each successive stretch in-
crement, until the final, fully deformed configura-
tion is reached.

Two orientations of atomistic unit cells are inves-
tigated. In the first, shown in Fig. 2, the axis of ap-
plied stretch is oriented along the [111]-direction in
the lattice. Here the BCC unit cell is a rectangle of di-
mensions L1×L2×L3 = a

√
3N1×a

√
6N2×a

√
2N3,

where N1, N2, and N3 are, respectively, the num-
ber of repeating planes stacked in the [111]-, [112̄]-,
and [11̄0]-directions. In the second orientation (not
shown), the axis of applied stretch is oriented along
the [100]-direction in the lattice, and the unit cell is
of dimensions L1 × L2 × L3 = aN1 × aN2 × aN3,
where N1, N2, and N3 are, respectively, the num-
ber of repeating planes stacked in the [100]-, [010]-,
and [001]-directions. Periodic boundary conditions
[74] are applied along all faces of the unit cell such
that atoms exiting the unit cell during the calcula-
tion are mapped back into the cell on the opposite
face, thereby preserving the total mass of the sys-
tem. Table 3 lists the details pertaining to specific

FIGURE 2. Atomic scale unit cell for BCC lattice (defect-
free [111] configuration shown)
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TABLE 3. Unit cell parameters for energy minimization computations
Case
#

Defect Lattice
orientation

Atoms
N

Unit cell size
L1×L2 ×L3 [nm]

Vacancy
conc. χ

Burgers vector
|b|[nm]

Disl. density
α11 [1/nm]

1 vacancy [111] 2016 3.29× 3.10× 3.13 5.0(10)−4 - -
2 vacancy [111] 8064 3.29× 6.20× 6.27 1.2(10)−4 - -
3 vacancy [111] 18144 3.29× 9.30× 9.40 5.5(10)−5 - -
4 vacancy [111] 32256 3.29× 12.4× 12.5 3.1(10)−5 - -
5 dislocation [111] 8064 3.29× 6.20× 6.27 - 0.27411 0.0071
6 dislocation [111] 18144 3.29× 9.30× 9.40 - 0.27411 0.0031
7 dislocation [111] 32256 3.29× 12.4× 12.5 - 0.27411 0.0018
8 dislocation [100] 2000 3.17× 3.17× 3.17 - 0.31652 0.0316
9 dislocation [100] 8000 3.17× 6.33× 6.33 - 0.31652 0.0079
10 dislocation [100] 18000 3.17× 9.50× 9.50 - 0.31652 0.0035
11 dislocation [100] 32000 3.17× 12.7× 12.7 - 0.31652 0.0020

unit cells investigated in this work and discussed in
what follows.

First considered are vacancies. The correspond-
ing initial configuration is constructed simply by re-
moving the atom closest to the centroid of the unit
cell. The defect density in this case is defined as the
volume fraction of missing atoms, that is, χ = 1/N,
where N is the total number of atoms prior to va-
cancy creation, ranging from 2016 to 32,256 among
the simulations listed in Table 3. Defect energy is
shown in Fig. 3, defined on a per-atom basis as
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FIGURE 3. Defect energy versus applied stretch for unit
cells with vacancy concentration χ. Energies computed
using current AEH method and CGM method [49]

Ed =
E − Ē

N
(59)

where E is the total potential energy of the system
from Eq. (47) and Ē is the total potential energy
of a perfect BCC W lattice of the same dimensions
and same number of atoms (prior to vacancy for-
mation), subjected to the same deformation bound-
ary conditions. From Fig. 3, we see that the AEH
approach is validated in the sense that it predicts
minimum energy atomic configurations that com-
pare favorably with those obtained using incremen-
tal conjugate gradient minimization (CGM). Com-
pared in Table 4 are the total vacancy energies NEd

at an applied deformation of F11 = 1.025 (2.5% uni-
axial strain), computed by AEH, CGM, and the CB
rule. In these calculations, AEH predicted the low-
est energy, followed by CGM, with CB predicting
the highest energy. Recall that all three methods
commenced from the same set of initial atomic coor-
dinates, found via energy minimization from CGM
at F11 = 1.000. For the CB, the atoms were dis-
placed homogeneously, via F11, from their initial co-
ordinates without any energy minimization or cor-
rection, leading naturally to a higher defect energy
than was achieved via the other two methods. No-
tice from Fig. 3 that the defect energy increases with
applied stretch F11. Furthermore, from Table 4, the
energy per vacancy under applied deformation de-
creases with decreasing defect density χ. Schultz
[82] reported an experimental value of 3.6 eV for va-
cancy formation energy in pure W at null applied
strain.
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TABLE 4. Vacancy energies at applied stretch F11 = 1.025, computed by asymptotic expansion homogenization
(AEH), conjugate gradient minimization (CGM), and the Cauchy-Born approximation (CB)

Case # Defect density χ
NEd[ev], F11 = 1.025

AEH CGM CB
1 5.0(10)−4 3.6603 3.7046 3.7203
2 1.2(10)−4 3.6492 3.7032 3.7189
3 5.5(10)−5 3.6456 3.7030 3.7187
4 3.1(10)−5 3.6439 3.7029 3.7186

Considered next is the energy of W containing
periodic arrays of screw dislocations. Two types of
screw dislocations are modeled. In the first type
(cases 5–7 in Table 3), the dislocation tangent line
and Burgers vector b are oriented along the [111]-
direction and pass through the centroid of the unit
cell, with b = |b| =

√
3a/2. This class of a/2 〈111〉

dislocations, most prevalent in BCC metals such
as W, is thought to dominate strain hardening be-
havior in plastic deformation and has received the
most attention in the molecular mechanics litera-
ture [74,78,80,83]. In the second type (cases 8–11
in Table 3), the tangent line and Burgers vector are
oriented along the [100]-direction and pass through
the centroid of the unit cell, with b = |b| = a.
Such a 〈100〉 dislocations, while of less general in-
terest than the aforementioned a/2 〈111〉 type, have
been observed in BCC metals [83], but usually as
part of hexagonal networks, emerging as a result of
attractive junctions between two a/2 〈111〉 disloca-
tions. Nonetheless, the a 〈100〉 dislocations are of
interest here since they provide another class of de-
fect whose behavior may be used to verify the accu-
racy of the AEH method, and may later be param-
eterized in a continuum setting. In either case, ini-
tial atomic positions, prior to minimization at null
strain via CGM, are prescribed via the usual dis-
placement field attributed to a screw dislocation em-
bedded in an infinite isotropic elastic body: u1 =
bθ̂/2π, where θ̂ is an angular coordinate about the
axis of the dislocation line. Note that the isotropic
solution should be particularly valid for tungsten as
single crystalline W is virtually elastically isotropic
[84]. The scalar dislocation density is defined as the
defect line length per unit reference volume, here
ρ̄ = 1/ (L2L3), and the dislocation density tensor
[85] becomes, in this context,

αAB = ρ̄bAξB (60)

where ξ is the unit tangent line in the reference con-
figuration. Note that α denotes the density of GNDs
in the sense of Ashby [62]. For the present set of sim-
ulations of screw dislocations, b ‖ ξ, and the only
nonvanishing component of α is α11 = b/ (L2L3).

The core structure for an a/2 〈111〉 screw disloca-
tion, prior to applied loading, is shown in Fig. 4(a).
In this two-dimensional illustration of the stacking
sequence of {111} planes, the relative [111] displace-
ments of atoms are denoted by arrows, with the size
of each arrow denoting the magnitude of the rel-
ative displacement [74,86]. The results shown for
the equilibrium undeformed structure of the dislo-
cation core are consistent with the findings in earlier
literature [74,83], thereby validating the initial con-
ditions used in the present set of simulations. The
following observations are made: (1) the differential
displacements exhibit threefold symmetry about the
dislocation core; (2) the largest displacements oc-
cur along the {110} planes, directed radially away
from the core, with decreasing magnitude on in-
creasing distance from the core; and (3) displace-
ments of other atoms in the system do not exhibit
reflection symmetry about the {110} planes. Dislo-
cation energies per atom, computed via AEH and
CGM, are compared in Fig. 4(b) for a/2 〈111〉 dislo-
cations and in Fig. 4(c) for a 〈100〉 dislocations. The
defect energy per atom is defined as in Eq. (59), that
is, Ed = (E − Ē)/N, where E is the total potential
energy of the system and Ē is the total potential en-
ergy of a perfect BCC W lattice of the same dimen-
sions and same number of atoms, subjected to the
same deformation boundary conditions. This quan-
tity is computed accurately by AEH, as is verified
by close agreement with the incremental conjugate
gradient (CGM) solutions, as shown in Figs. 4(b)
and 4(c). Note, however, that AEH appears to per-
form better (i.e., yields a lower result for Ed rela-
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FIGURE 4. Screw dislocation results. a) [111] differential displacement map for a/2 〈111〉 screw dislocation [74,86],
b) energy comparison for a/2 〈111〉 screw dislocation; c) energy comparison for a 〈100〉 screw dislocation

tive to that predicted by CGM) for the a 〈100〉 dislo-
cations than the a/2 〈111〉 dislocations at large de-
fect densities. Furthermore, for a/2 〈111〉 disloca-
tions (Fig. 4(b)), a linear increase in stored defect
energy with applied deformation F11 is observed.
However, for a 〈100〉 dislocations (Fig. 4(c)), the de-
fect energy remains virtually constant or decreases
very slightly with applied deformation. For both
classes of dislocations, an approximately linear in-

crease in Ed with increasing dislocation density α11

is evident. Also, comparing Figs. 4(b) and 4(c), for
similar magnitudes of dislocation density, the defect
energy for the a 〈100〉 dislocations is substantially
greater, presumably due to a larger Burgers vector.
For example, Ed = 0.0184 eV / atom for a 〈100〉 dis-
locations at α11 = 0.0035/nm and at F11 = 1.000,
while Ed = 0.0114 eV / atom for a/2 〈111〉 disloca-
tions at α11 = 0.0031/nm and at F11 = 1.000.
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5. CONTINUUM MODELING OF ENERGETICS
OF POINT AND LINE DEFECTS

Considered next are continuum representations of
energy density for W single crystals containing peri-
odically distributed vacancies or screw dislocations.
Note that no attempt is made to consider isolated
dislocation energies, as has been the goal of previ-
ous studies [33]. Instead, the effects of neighboring
defects are purposely included, thereby represent-
ing a distribution of lattice imperfections as would
occur, for example, in a plastically deforming sam-
ple of material.

In the context of continuum defect field theories
[66,87–89], one may decompose the tangent map
from an initial, defect-free state B̄ to the current con-
figuration B multiplicatively, that is,

A = FK Aa
.α = F a

.AKA
.α (61)

where F is the compatible deformation gradient
(Eq. (1)) from undeformed, but possibly defective,
state B0 to deformed configuration B; K represents
insertion of defects into the macroscopically unde-
formed lattice; and A is the total deformation map-
ping. Greek indices denote components referred to
basis vectors in defect-free configuration B̄. The
physics of Eq. (61) are illustrated conceptually in
Fig. 5. Generally, neither A nor K is a compatible de-
formation mapping as defects such as dislocations
and vacancies introduce discontinuities in the lat-
tice, and there is no one-to-one correspondence be-
tween atoms in B̄ and B0. As such, skew-symmetric
spatial gradients of anholonomic mappings A and K
are generally nonvanishing [54,66].

FIGURE 5. Configurations and tangent mappings in
continuum defect theory

For a material with uniform and dilute vacancy
density χ, contraction of the lattice attributed to va-
cancy formation is of the isotropic form [54,90]

KA
.α = (1 + χ)−1/3

δA
.α (62)

The corresponding strain energy density per atom,
under isothermal conditions, can be written as

Ψ = Ψ0 + (1− χ)ΨE + χΨV (63)

where Ψ0 is the cohesive energy of the undeformed,
defect-free lattice; ΨE is the recoverable elastic strain
energy; and ΨV is the formation energy per va-
cancy. Note that Ψ in Eq. (63) may be converted to a
per-unit-reference-volume basis via division by the
atomic volume per atom β. To first order,

ΨE = 1
2 Ĉ

AB
ab (F a

.A − δa
.A)

(
F b

.B − δb
.B

)

= 1
2C

ABCDEABECD (64)

where the elastic constants ĈAB
ab or CABCD are eval-

uated for a defect-free crystal at F a
.A = δa

.A or EAB =
0. Total energies relative to Ψ0, computed via the
CDF approach of Eq. (63), are compared quantita-
tively with those obtained from AEH calculations in
Table 5 and Fig. 6. For W, the energetic parameters
entering Eq. (63) are Ψ0 = EC = −8.90 eV / atom
and ΨV = 3.63 eV. The elastic energy density ΨE

used in the CDF approximation is determined here
by subtracting Ψ0 from the total energy of the de-
formed perfect lattice such that Eq. (64) is not used
explicitly. As is clear from Table 5 and Fig. 6, for
simulations 1–4, agreement between AEH and CDF
is within 0.1% for the total energy Ψ − Ψ0, even at
the largest defect density of χ = 5.1 (10)−4. From
Fig. 6, the total energy increases with the applied
deformation in a quadratic fashion, with initial dif-
ferences among the curves at F11 = 1.000 caused by
differences in initial vacancy concentration, as accu-
rately captured by the third term on the right-hand
side of Eq. (63). Defect energy Ed is listed in Ta-
ble 6. For the AEH method, this is computed via
Eq. (59), while for the continuum defect theory, it is
defined as summed magnitude of contributions of χ
in Eq. (63) to elastic and initial energies:

Ed = χ (ΨE + ΨV ) (65)

As is clear from Table 6, defect energies predicted
by simulation and continuum approximation agree
to within 1%, even at the highest vacancy concen-
tration.
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TABLE 5. Total energies described by multiscale theories: asymptotic expansion homogenization (AEH, computa-
tion) and continuum defect field (CDF, parameter fit)

Case # Defect Defect density
Ψ−Ψ0[ev/atom], F11 = 1.000 Ψ−Ψ0[ev/atom], F11 = 1.025
AEH CDF AEH CDF

1 vacancy 5.0(10)−4 1.8021(10)−3 1.8006(10)−3 0.016627 0.016604
2 vacancy 1.2(10)−4 4.5035(10)−4 4.5015(10)−4 0.015263 0.015259
3 vacancy 5.5(10)−5 2.0014(10)−4 2.0007(10)−4 0.015012 0.015001
4 vacancy 3.1(10)−5 1.1258(10)−4 1.1254(10)−4 0.014924 0.014923
5 [111] disl. 0.0071/nm 0.021664 0.022616 0.040209 0.038572
6 [111] disl. 0.0031/nm 0.011379 0.010052 0.028345 0.025371
7 [111] disl. 0.0018/nm 7.1017(10)−3 5.6541(10)−3 0.023323 0.020751
8 [100] disl. 0.0316/nm 0.114262 0.150512 0.131972 0.169068
9 [100] disl. 0.0079/nm 0.036432 0.037628 0.054277 0.056184
10 [100] disl. 0.0035/nm 0.018391 0.016724 0.036445 0.035279
11 [100] disl. 0.0020/nm 0.011235 0.009407 0.029438 0.027963
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FIGURE 6. Computed (AEH) and continuum approxi-
mations (Eq. (63)) for total system energy of BCC tungsten
with periodic vacancy density Ψ

In the continuum defect field theories, disloca-
tions are considered to be continuously distributed,
and the strain fields and displacement discontinu-
ities of individual defects are not represented ex-
plicitly. Consider a crystal containing periodically
spaced screw dislocations oriented along the X1-
axis. The deformation mapping attributed to such
defects is of the form

K = δA
.αGA ⊗ ḡα + γ1

.2

(
X2, X3

)
G1 ⊗ ḡ2

+ γ1
.3

(
X2, X3

)
G1 ⊗ ḡ3 (66)

where the antiplane deformation components γ1
.2

and γ1
.3 are differentiable but generally noninte-

grable functions of their arguments, and where GA

and ḡα denote basis vectors on B0 and B̄, respec-
tively. The density of GNDs may then be computed
from gradients of K as follows [50,51,55,66,91]. The
total Burgers vector B arising from all dislocations
piercing area A can be expressed as the line or area
integral

Bα = −
∮

C

K−1α
.A dXA =

∫

A

εABCK−1α
.A,BNCdA (67)

=
∫

A

K−1α
.A ᾱACNCdA=

∫

A

K−1α
.A

(∑

i

ρ̄bAξC

)
NCdA

where C is a closed loop encircling A with unit nor-
mal N and α is the density of dislocations, defined
in a discrete manner in Eq. (60) for one family of
dislocations and generalized here as a summation
over i families of dislocation segments each having
constant Burgers vector b and tangent line ξ, both
referred to reference configuration B0. The permu-
tation symbols are written εABC . From Eq. (67) and
the identity ∂X

(
KK−1

)
= 0, the GND density ten-

sor is then

ᾱAC = KA
.αεDBCK−1α

.D,B = −K−1α
.D εDBCKA

.α,B (68)

The following general functional form of the
isothermal free energy for a crystal with a nonzero
dislocation density is postulated:
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TABLE 6. Defect energies described by multiscale theories: asymptotic expansion homogenization (AEH, computa-
tion) and continuum defect field (CDF, parameter fit)

Case # Defect Defect density
Ed[ev/atom], F11 = 1.000 Ed[ev/atom], F11 = 1.025

AEH CDF AEH CDF
1 vacancy 5.0(10)−4 1.8021(10)−3 1.8006(10)−3 1.8156(10)−3 1.8079(10)−3

2 vacancy 1.2(10)−4 4.5035(10)−4 4.5015(10)−4 4.5252(10)−4 4.5199(10)−4

3 vacancy 5.5(10)−5 2.0014(10)−4 2.0007(10)−4 2.0093(10)−4 2.0088(10)−4

4 vacancy 3.1(10)−5 1.1258(10)−4 1.1254(10)−4 1.1299(10)−4 1.1300(10)−4

5 [111] disl. 0.0071/nm 0.021664 0.022616 0.025399 0.023761
6 [111] disl. 0.0031/nm 0.011379 0.010052 0.013534 0.010561
7 [111] disl. 0.0018/nm 0.007102 0.005654 0.008513 0.005940
8 [100] disl. 0.0316/nm 0.114262 0.150512 0.113417 0.150512
9 [100] disl. 0.0079/nm 0.036432 0.037628 0.035721 0.037628
10 [100] disl. 0.0035/nm 0.018391 0.016724 0.017889 0.016724
11 [100] disl. 0.0020/nm 0.011235 0.009407 0.010882 0.009407

Ψ = Ψ0 + ΨE + µ
(
l2αABĜACĜBDαCD

)m

(69)

where Ĝ is a (dimensionless) metric tensor defined
on B0 used to compute the inner product of the
contravariant tensor α, µ is an elastic shear mod-
ulus (constant), and l (units of length) and m (di-
mensionless) are scalars. For W of interest here,
µ = 159 GPa = 16.07 eV / atom. Typically, the met-
ric in Eq. (69) is selected for simplicity as ĜAB =
δAB [51–53]; however, there is some evidence that
other choices may be more appropriate. Gibeling
and Nix [92] discussed, from the standpoint of dis-
crete dislocation modeling, how the strain energy
sustained by dislocations may be amplified by ex-
ternally applied deformations. As such, following
[66,93], the covariant elastic deformation measure
ĜAB = CAB = F a

.AgabF
b
.B may be used in Eq. (69) to

reflect amplification of internal defect energy com-
mensurate with applied deformation. The choice
of m in Eq. (69) also warrants careful consideration.
Most often in recent literature, m = 1 is used to re-
flect a quadratic dependence of the free energy on
the GND tensor [51–53]. This form is often invoked,
in conjunction with thermodynamic arguments, to
provide a back stress dependent on the density ten-
sor of dislocations [52,64] and/or its spatial gradient
[51,53]. Clayton [63] assumed a linear dependence
(m = 1/2) of stored energy on dislocation density in
a continuum crystal plasticity model of single crys-
talline W. A linear dependence of free energy on
SSD density is also commonly prescribed [52]. Fi-

nally, in continuum dislocation–based plasticity the-
ories, the length parameter l is often calibrated in a
phenomenological manner to reflect the degree of
additional stiffness or strain hardening imparted by
the dislocation density, for example, in torsion of a
thin wire [94] or in nanoindentation [95,96].

In the present work, parameters l and m enter-
ing Eq. (69) are computed directly via a best fit to
results from AEH calculations, as opposed to a cali-
bration to macroscopic data. For both a/2 〈111〉 and
a 〈100〉 dislocations, m = 1/2 provides a superior fit
to the computational results than does m = 1. Since
the defect energy Ed in Fig. 4(b) for a/2 〈111〉 dislo-
cations increases with applied deformation, ĜAB =
CAB = F a

.AgabF
b
.B is used for dislocations of that ori-

entation. Note that for uniaxial strain of the form
F11 = 1 + ε̄, with screw dislocations oriented paral-
lel to the X1-direction, the defect energy in Eq. (69)
degenerates to

Ed = µ
(
l2αABĜACĜBDαCD

)1/2

= µlα11
(
1 + 2ε̄ + ε̄2

)
(70)

On the other hand, since the energy Ed in Fig. 4(c)
of a 〈100〉 dislocations remains relatively constant
with applied loading, ĜAB = δAB is used for rep-
resenting the energy of a 〈100〉 dislocations, mean-
ing that Eq. (69) applies in that case with ε̄ = 0.
For a/2 〈111〉 dislocations, l = 0.200 nm = 0.73b,
and for a 〈100〉 dislocations, l = 0.297 nm = 0.94b.
These values are much smaller in magnitude than
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some of those calibrated from macroscopic data,
with l reported in the latter on the order of several
micrometers [94,95], though values in the nanome-
ter range have been suggested for l from hardness
measurements inferred from indentation data [96].
Comparisons of the energy Ψ − Ψ0 described by
the CDF theory of Eq. (69) with numerical predic-
tions from AEH over the range of uniaxial deforma-
tion 1.000 ≤ F11 ≤ 1.025 are shown in Fig. 7 for
a/2 〈111〉 dislocations and in Fig. 8 for a 〈100〉 dislo-
cations. For ease of quantitative comparison, values
at F11 = 1.000 and F11 = 1.025 are tabulated for
the relative total energy Ψ − Ψ0 in Table 5 and de-
fect energy Ed in Table 6. The agreement between
AEH and CDF predictions is generally modest and
is closest at relatively large defect densities, that is,
for α11 > 0.005 / nm.

The investigation conducted here is limited in
the sense that only a few classes of screw dislo-
cations are examined, for only one material, and
these defects are arranged periodically in the lat-
tice. Furthermore, all simulations are isothermal at
null temperature (akin to molecular statics). How-
ever, the work represents an initial step toward com-
puting energies used in continuum defect theories
from physics-based, multiscale-atomistic computa-
tions, as opposed to phenomenological curve fit-
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FIGURE 7. Computed (AEH) and continuum approx-
imations (Eq. (69)) of energy for BCC tungsten with non-
zero dislocation density component α11 arising from pe-
riodic a/2 〈111〉 screw dislocations
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imations (Eq. (69)) of energy for BCC tungsten with non-
zero dislocation density component α11 arising from pe-
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ting to macroscopic stress-strain or microindenta-
tion data, for example. The dislocation densities
considered here, with ρ̄ on the order of 1016/m2,
are quite large relative to densities found in homo-
geneously deforming single crystals. Argon and
Maloof [97] reported values of ρ̄ on the order of
1012/m2 for pure tungsten single crystals deformed
up to 5% axial tensile strain. Densities examined
presently correspond to a dislocation spacing on
the order of 10 nm. In highly strained regions of
crystal, such as in the vicinity of grain or subgrain
boundaries formed during severe plastic deforma-
tion (SPD), such tight spacing may not be unrea-
sonable. For example, if one considers a bound-
ary comprising a sequence of dislocations of spac-
ing h and Burgers vector b, the misorientation at
the boundary can be computed as b/h [98], on the
order of 4◦ for 10-nm-spaced dislocations in tung-
sten. For subgrain boundaries produced in tungsten
crystals deformed through SPD processes [99,100],
misorientations of such magnitude have been doc-
umented. Furthermore, strain gradient–based con-
tinuum defect theories are designed to address such
phenomena in the context of crystal plasticity [51–
55], so results presented here may be applied to mo-
tivate continuum energy dependencies, at least in
a qualitative sense, on defect densities that serve

International Journal for Multiscale Computational Engineering

Begell House Inc., http://begellhouse.com Downloaded 2008-1-29 from IP 128.63.66.91 by Dr. John Clayton (jdclayt)



MULTISCALE MODELING OF POINT AND LINE DEFECTS IN CUBIC LATTICES 221

an important role in such theories. The thermody-
namics of stored energy of cold working may also
influence shear localization processes in ultra fine
grained tungsten [100,101], a material that can ex-
hibit dislocation densities of the magnitudes stud-
ied here.

6. CONCLUSIONS
A multiscale method based on the theory of asymp-
totic expansion homogenization is developed and
implemented. The technique enables computation
of global or coarse-grained mechanical properties
such as effective elastic stiffness and net stress of
a deforming unit cell consisting of periodically ar-
ranged, discrete atoms at the fine scale. The for-
mulation directly accounts for the effects of defects
in the lattice. From a computational standpoint,
the method is an efficient alternative to incremen-
tal conjugate gradient schemes in terms of predic-
tion of minimum energy configurations of atomic
degrees of freedom in statically deforming lattices
containing defects. The direction of a perturba-
tive displacement—which serves as a correction to
the CB rule which is accurate only for homoge-
neous deformations—is computed via application
of the homogenization scheme in an equation that
relates the free energy of the system, the macro-
scopic deformation gradient, and local atomic de-
grees of freedom. The key computational advan-
tage of this approach, relative to traditional molecu-
lar statics or molecular dynamics, is the use of a di-
rected line search algorithm, which reduces the en-
ergy minimization process from minimization over
traditional 3 × N solution space to a line search in
one dimension (with this direction determined as
mentioned above via solution of the fine-scale equi-
librium equation of the homogenization scheme).
The current multiscale method also does not present
any difficulties associated with matching boundary
conditions across length scales since the displace-
ment gradient, rather than displacements them-
selves, is the kinematic quantity exchanged between
scales. In validation simulations with predefined
defect structures, close agreement is found with en-
ergies predicted by the present method and conju-
gate gradient-based molecular mechanics, and cat-
egorically lower system energies are predicted than
those obtained from the CB rule.

Specifically studied here are the nonlinear elas-
tic responses of BCC tungsten single crystals con-

taining periodically distributed vacancies and screw
dislocations of two different classes. It is found that
energies associated with vacancies and a/2 〈111〉
screw dislocations tend to increase with applied
uniaxial stretching, while energies of a 〈100〉 screw
dislocations tend to remain constant with stretch.
These computed energies are used to motivate con-
tinuum energy functions for defective crystals de-
scribed in terms of the vacancy density, the disloca-
tion density tensor, and/or the applied deformation
gradient. For crystals with vacancies, a continuum
description of defect energy increasing linearly with
vacancy density is found to be extremely accurate,
relative to the computational results, over the range
of defect densities considered. For W with screw
dislocations, a defect energy linearly dependent on
dislocation density provides better agreement with
numerical results than does a quadratic dependency
of this energy on the dislocation density tensor often
encountered in dislocation-based gradient plasticity
theory.

The method and results presented here offer sev-
eral avenues for improvement of existing crystal
elasticity and plasticity models. The present fo-
cus has been on the nonlinear elastic response as
well as construction of elastic strain- and defect-
energy functions entering continuum gradient plas-
ticity theories. The results could be used in stand-
alone crystal plasticity theory, either classical local
theory [102] or nonlocal gradient theory [55], in ei-
ther case with the stored energy and elastic moduli
allotted an explicit dependence on initial defect con-
tent. More ambitiously, the present homogeniza-
tion technique could be incorporated in a discrete-
continuum multiscale context, with elastic modu-
lus and stored energy depending on the fine-scale
configuration of defects resolved concurrently in the
simulation; such an idea was pursued in [45] for sin-
gle slip conditions. Finite temperature effects would
be needed for realistic resolution of dislocation dy-
namics. Incorporation of such effects would involve
some reformulation of the governing equations to
account for dynamic as opposed to static conditions,
beginning with Eq. (4), or consideration of alterna-
tive computational strategies for irreversible ther-
modynamics, as discussed below. In principle, ther-
mally activated dislocation line motion could then
be transferred upward in scale to describe contin-
uum plastic deformation [50].
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Finally, it is appropriate to note the scope of
potential applications and some of the limitations
of the method proposed in this article. Consider
specifically the developments leading to Eq. (32)
and several of the general underlying assumptions
of the homogenization technique. The use of a trun-
cated expansion of the strain energy presumes that
the system stays in the positive definite region of the
energy landscape and that the deformations con-
sidered are primarily of the thermodynamically re-
versible kind. While it is possible to incorporate
irreversible mechanisms, as has been attempted in
[45] by prescribing specific kinetic pathways for dis-
location glide, the development of general models
accounting for irreversible continuum-scale mecha-
nisms such as, say, plasticity, based on atomistic in-
teractions, has yet to be fully realized. Such mod-
els would be needed to account for dissipation and
the nonequilibrium effects associated with energy
transfer in and around the simulation domain. In
such cases, modeling approaches using a gener-
alized homogenization method to account for the
time variable may be needed [46].

The limitations imposed on possible applications
by the assumption of periodicity merit reiteration.
In this work, the primary results stem from the ac-
counting of the physically inhomogeneous defor-
mation around crystal defects, with a demonstrated
connection between atomic and continuum model-
ing methods. Insofar as the distribution of imper-
fections such as dislocations can be described as be-
ing periodic, the proposed homogenization method
is applicable [33], with suitable accuracy, as sug-
gested by the results reported here. In the event
that the system departs from periodicity, a common
occurrence in the irreversible regime, where dislo-
cations move and can ultimately pile up along in-
terfaces, adaptive modeling approaches [103–106]
may be most suitable. In such instances, hetero-
geneous solution domains involving some subdo-
mains modeled through homogenization, as de-
scribed here, and others modeled with quasicon-
tinuum theory [26–28] or direct molecular statics,
for example, would be appropriate. Investigations
of the like suggest interesting directions for future
work. With the present homogenization technique,
it should also be noted that periodicity of the lat-
tice enables one to consider a reduced number of
atoms, relative to a more disordered material, at the
fine scale. For example, modeling of a single crys-

tal of uniform lattice orientation generally requires
far fewer atoms than would realistically modeling
a polycrystal. The latter, though conceptually fea-
sible, would require computationally costly atom-
istic resolution of grain boundaries and intergranu-
lar misorientations.
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